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Abstract— How likely is it that a driver notices a person
standing on the side of the road? In this paper we introduce
the concept of pedestrian detectability. It is a measure of how
probable it is that a human observer perceives pedestrians in an
image. We acquire a dataset of pedestrians with their associated
detectabilities in a rapid detection experiment using images of
street scenes. On this dataset we learn a regression function that
allows us to predict human detectabilities from an optimized
set of image and contextual features. We exploit this function
to infer the optimal focus of attention for pedestrian detection.
With this combination of human perception and machine vision
we propose a method we deem useful for the optimization of
Human-Machine-Interfaces in driver assistance systems.

I. INTRODUCTION
In this paper we present the concept of pedestrian de-

tectability which measures the probability that a pedestrian
is detected by an observer ‘at a glance’. This concept can
allow driver assistance systems to estimate which pedestrians
are unlikely to have been noticed by the driver, hence posing
a greater risk for collision. We present a novel machine-
vision approach for predicting the detectability of pedestrians
in natural scenes and demonstrate that knowledge about the
characteristics of the detectability of pedestrians can improve
user-performance in a localization task.

The main goal of driver assistance systems is to make
traffic safer for all participants (e.g. by providing feedback
about possibly dangerous situations or even by active in-
tervention for collision avoidance). Collisions between cars
and pedestrians are a major source of danger. According
to the BAST [32], there were 31.647 traffic accidents that
involved pedestrians in Germany in 2009. Consequently,
driver assistance systems usually aim at detecting pedestrians
and informing the driver about possible risks. Over the course
of the last several years, pedestrian detection and tracking has
constituted an active field of research and major advances
have been achieved (e.g. [12], [16], [25]). In spite of their
impressive results, current approaches are still not able to
match human performance. At first glance, this seems to
undermine the usefulness of driver assistance systems, since
the computer would have to rely on worse input data than
the driver, but would have to accomplish a better prediction
of possible risks. Nonetheless, the utility of artificial vision
systems can be justified, in the case of distracted drivers or
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Fig. 1. The notion of detectability measures the ease with which pedestrians
can be detected in an image. The pedestrian on the right (green) is easily
detected, the one in the center (yellow) is harder to detect because of
the difficult lighting conditions. The marked pedestrian (red) on the left
has a very low detectability. Predicting these detectabilities allows a driver
assistance system to better estimate which pedestrians might be in danger.

in conditions with bad visibility. Taking into account other
modalities, such as infrared cameras and depth sensors, it
is reasonable to expect computer vision-based pedestrian
detection to outperform humans in the near future.

Finding the pedestrians that are relevant for the driving
task is crucial. However, it constitutes only one part of
a useful driver assistance system. An open question from
the field of Human-Machine-Interfaces (HMI) is how in-
formation is best presented to a driver. The data should be
presented in a minimally intrusive fashion while still offering
all information that is relevant to the task, thus allowing the
driver to avoid collisions without distraction. For example,
drawing attention to all the pedestrians in the field of view
of the driver by, for example, highlighting their outlines with
a head-up display would probably be more distracting than
useful. Thus, the following question arises: Which location
should the attention of the driver be directed to by a driver
assistance system? Ideally, the system should perform a risk
assessment and estimate the pedestrians in the given scene
that are most at risk. Risk assessment is a difficult problem to
solve algorithmically, but it is one that can be done quite well



Fig. 2. The design of the experiment to determine the detectabilities of pedestrians. A fixation cross was presented for 500ms (1), followed by the test
image from the StreetScenes database for 100ms (2) and a noise mask for 500ms (3) to suppress all further low-level processing. During the response
phase (4), participants clicked on all pedestrians they had noticed in the image. In one fifth of the trials, feedback (5) about the true positions of all labeled
pedestrians in the image was provided for 3 seconds.

by human drivers. We propose that pedestrians who have not
been noticed by the driver present higher risks of collision
and that the driver should be alerted to their presence by the
assistance system. Consequently, we developed a method to
predict which pedestrians have most likely been missed by
the driver using methods from computer vision and machine
learning. Our framework is able to predict the optimal point
where the attention of the driver should be drawn in a sudden
hazard situation (e.g. using a head-up display) to maximize
the chance that all pedestrians in the scene will be detected.

First, Section II will present some related work on the
problem. Section III outlines our method used to create
a database of pedestrians along with their associated de-
tectabilities. Section IV shows how this database is used to
learn a mapping to predict detectabilities. Finally, Section V
demonstrates how the output of such a regression function
can be used to successfully predict the optimal fixation point
for maximizing human pedestrian localization performance.
We discuss our approach in Section VI and provide an
outlook on our work.

II. RELATED WORK

To the best of our knowledge, this study is the first
one proposing an approach that estimates the detectabilities
of pedestrians for HMI-optimization, using a computer vi-
sion approach. Most closely related is the recent work by
Pomarjanschi et al. [31] who used gaze tracking during
a driving task in a virtual reality setting to estimate the
pedestrians that were likely to have been missed by the
driver. Their study, however, neglected the visual properties
of the pedestrian appearance and its scene context, which
are likely to influence the detectability of pedestrians. Doshi
and Trivedi [13] introduced an approach combining gaze
tracking with analysis of the environment, using computer
vision to predict driver attention. Similarly, Fletcher et al.
[17] have investigated driver gaze tracking in the context of
driver assistance systems. Based on a related idea, Spain and
Perona [35] measure and predict the ‘importance’ of objects
in an image, i.e. , the order in which they will be named by a
human observer. Pinneli et al. [30] use a Bayesian framework
to predict the perceived ‘interest’ of an object using various
factors such as location, contrast and color.

Most approaches to driver assistance systems address
the problem of collision avoidance by detecting (e.g. [12],
[26], [27], [29]) and tracking pedestrians (e.g. [2], [34]).
Furthermore, pedestrian pose estimation, which can yield
further valuable information about the future actions and
paths of persons, has received considerable attention from
the computer vision community lately ([1], [28]). Moreover,
perceiving and interpreting behavior of groups of pedestri-
ans correctly is a promising research direction, especially
in driver assistance scenarios [23]. Integrating such high-
level information with the results from our approach could
drive an internal simulation of the driver assistance system
that predicts the future risks of the current situation and
the pedestrians therein (c.f . research regarding risk horizon
estimation by e.g. Laugier et al. [18], [24]).

III. MEASURING DETECTABILITY

In order to train an algorithm that is able to estimate
human detectabilities from labeled images, we first needed
a dataset containing pedestrians with their associated de-
tectabilities. Humans are almost perfect at finding people in
images when there are no time constraints, but this does not
imply that all pedestrians are equally easy to find in an image.
In a driver assistance context, it cannot be assumed that the
driver will always devote his full attention to searching for
pedestrians. Consequently, the definition of the detectability
of a pedestrian we suggest here, is the probability that the
position of a pedestrian in an image can be reported correctly
by a human observer after the image has been presented for
only 100 milliseconds (see Equation 1):

D(Pedestrian) = p

(
Pedestrian position is
reported after 100ms

)
(1)

We opted for the relatively brief presentation time to
ensure that only very little high level cognitive processing
is taking place and to prevent eye movements (saccades)
from having an impact on the perception of the image. Usual
saccade latencies are about 200ms (see [10]) and even ultra-
rapid saccades (e.g. [19], [21]) have a latency of 80ms-
100ms and a duration of over 50ms which is considerably
longer than the stimulus presentation time chosen here. This
definition of detectability captures the idea of the ease of
detecting a pedestrian in an image ‘at a glance’. Our working



hypothesis is that detectability is highly correlated with the
probability that a distracted driver (or one that is not paying
full attention to the street) will overlook the pedestrian, which
are situations wherein a driver assistance system should step
in and alert the driver appropriately.

A. Data

We performed a psychophysical experiment to obtain
a set of pedestrians with their associated detectabilities
D(Pedestrian)’s. To ensure validity in a relevant setting, we
chose a dataset that contains labeled pedestrians in a natural
setting. The MIT StreetScenes dataset [6] is well suited for
the task since it contains labeled pedestrians in a wide variety
of poses and contexts as well as dense labels for other object
classes such as cars or sidewalks which might influence
the detectability of pedestrians. Furthermore, it includes a
large number of images containing two or more pedestrians,
which is important since we assume that a higher number of
distracting pedestrians might reduce the overall detectability.
The StreetScenes database contains several images with
suboptimal or ambiguous labelings. However, these are not
detrimental in our case since we only needed a subset of a
few hundred images from the whole dataset (more than 3500
images) for our experiment. This enabled us to select images
with high quality annotations for the experiment by hand.

B. Experimental Design

For the experiment we selected a total of 626 images from
the StreetScenes database. 142 contained no pedestrians, 245
contained exactly one pedestrian and 239 contained two
or more pedestrians. One trial of the experiment consisted
of the following stages: 1) The participants were shown
a fixation cross for 500ms. 2) The stimulus image from
the database was presented for 100ms. 3) A random noise
mask was shown for 500ms to prevent any further low-
level processing taking place after stimulus presentation. 4)
A black screen was then presented and the participants had
to indicate where in the image they perceived pedestrians
by clicking on their locations on the screen with a mouse.
A red dot appeared where they clicked. 5) In 20% of the
trials, chosen at random, the participants were shown the
same test image again. This time, it was a composite of
the original image and the ground truth positions of the
pedestrians and the responses of the participants. This type
of feedback was given to allow the participants to correct
for any biases in their responses (without feedback, users
demonstrated a tendency to click closer to the center of
the image). A schematic representation of the experiment
for obtaining human detectability characteristics is shown in
Figure 2. The experiment was programmed in MATLABTM

using the freely available Psychophysics Toolbox 3 ([8], [22])
to ensure accurate timing.

The rapid presentation intervals can make this an exhaust-
ing task for the participants. To avoid fatigue effects, we
forced the users to take a short break every 100 trials. The
head position of the participants was fixated 65 centimeters
in front of the monitor with a chinrest, resulting in a

Fig. 3. Examples of correct (green crosses) and incorrect (red dots)
participant responses in the detectability experiment. The red circle shows
the 100 pixel radius around the center of the pedestrian that represents the
‘hit zone’. All clicks in that circle were treated as correct detections of
that pedestrian. For large pedestrians (left), the whole body also counted
as ‘hit zone’. In case of multiple pedestrians that are close together (right),
ambiguous clicks can occur. Since we are not able to determine post-hoc,
which pedestrian was really detected by the user we treat both pedestrians
as being ‘detected’.

horizontal viewing angle of approximately 60◦. An extensive
introduction and training phase preceeded the experiment to
familiarize the participants with the setup and to minimize
response biases. After the experiment, all participants an-
swered a questionnaire. A total of 11 subjects (mean age:
26.4; 7 males, 4 females) participated in the experiment. Of
these 11 participants, 10 were right-handed and one was left-
handed. A response took 1.5 seconds on average.

Our response method asks the participants to click on the
positions where they have seen a pedestrian from memory.
This pointing task is prone to several kinds of noise such
as: manual imprecision during clicking, inaccurate memory
encoding and retrieval as well as other effects. To compensate
for this, we counted every click within a radius of 100 pixels
around the center of gravity of a pedestrian as a correct
detection. For large pedestrians, we also accepted clicks on
the annotation polygon as a hit (see Figure 3). By averaging
over all participants’ responses, we obtained the detectability
characteristics denoted by D(Pedestrian) for each pedestrian.

C. Results

The average detectability across all pedestrians in our
database is 62.97%. A more detailed distribution of de-
tectabilities is shown in the histogram in Figure 4. Broadly
speaking, all possible detection probabilities were evenly
represented in our database (except for a high number (172)
of samples that were correctly detected by all participants).
An analysis of the correlations between the percentage of
correctly marked pedestrians with the answers given in the
questionnaire is summarized in Table I. Only the correlation
with driving experience is significant at the 5% confidence
level. The correlation with the total number of clicks in all
images approaches significance (p = 0.056). It is interesting
to note that neither gender, experience with video games
or the estimated percentage of correct answers, as reported
by the participants, showed any significant correlation with
their performance (correlations of 0.15, 0.16 and 0.10, re-
spectively).
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Fig. 4. Histogram of the count of pedestrians for the different detection
probabilities. There is a high number of pedestrians (172) that were correctly
reported by all participants.

Age −0.28
Response Time 0.39
Proficiency with Computer −0.24
Regularity of driving 0.64
Estimated % correct 0.10
Estimated % of images with more than one pedestrian 0.42
Total # of clicks 0.59
Proficiency with video games 0.16
Gender 0.15

TABLE I
CORRELATIONS BETWEEN THE RESPONSES FROM QUESTIONNAIRES

AND PEDESTRIAN DETECTION PERFORMANCE.

IV. PREDICTING DETECTABILITY

In order to provide useful information in a driver assistance
context, we have to prove that a purposeful mapping can be
learned which is able to reliably and robustly predict the
detectabilitiy of pedestrians. Our dataset contains a total of
852 samples of pedestrians with associated detectabilities.
We randomly split this dataset into 600 samples for training
and the remaining 252 samples were set aside for testing
and estimating the validation performance. The mapping
can be realized in terms of a regression function. This is
a difficult task since the training data obtained during the
first experiment is noisy. Even though the subset of images
from the StreetScenes was selected by hand, the images and
annotations are not perfect. The manual imprecision of the
participants can lead to false detections or misses and in
situations where a group of pedestrians is close together,
the response clicks of the participants can be ambiguous
(see Figure 3 (right)). To counteract the noise in the data,
we needed to train a regression function with the help of a
machine learning algorithm that operates on a set of robust
features. We chose Support Vector Regression (SVR, c.f .
[14], [33]) with a Radial Basis Function (RBF) kernel as a
regressor as it has proven to produce state-of-the-art results
even on small and noisy datasets. We employed the freely
available LIBSVM [11] implementation to train and test our

Name Description
pHoG Pyramidial Histogram of Oriented Gradients De-

scriptor as described in [7]
Pos

Position, Size, Color and Standard deviation of the
pedestrian

Area
PedMean
PedStd
PedCount Total number of pedestrians in the image
DiffMean Difference in mean color, standard deviation and

the earth mover distances between difference types
of histograms between the bounding box of the
pedestrian and its context (see Figure 5))

DiffStd
DiffHist
DiffRGBHist
DiffLABHist
Dist2Center Distance from the center of the pedestrian to the

center of the image, to the center of the closest
other pedestrian and car in the image

Dist2Ped
Dist2Car
PixelPerClass Number of pixels in the image of each of the eight

annotated classes the three forground classesPixelPerFG
FixColor Mean brightness of a 15 × 15 area around the

fixation point in the image and the difference
between the fixation point and the mean color of
the pedestrian

DiffFix

mfThres After resizing the image in the bounding box
around the pedestrian to 100× 50, we computed
the flux flow F as described in [15]. mfThres is the
number of pixels whose flux flow is above a
threshold of 1 and represents the level of symmetry
in this area. mfCount is the number of Interest
points on the pedestrian. mfMaxScale and
mfMeanScale are the largest and average local
scales at the interest points.

mfCount

mfMaxScale

mfMeanScale

TABLE II
NAME AND A SHORT DESCRIPTION OF THE FEATURES USED FOR THE

PREDICTION OF THE DETECTABILITIES.

SVRs. We extracted a large battery of features from the
dataset (Table II shows a list of all features).

Features encoding the symmetry of the pedestrians such
as mfThres, mfCount, mfMaxScale and mfMeanScale are of
special interest. As observed by e.g. [4] and [9], shape-
centered features that encode the symmetry can be very
powerful for pedestrian detection and tracking since pedes-
trians are highly symmetric shapes. Therefore, we expect
pedestrians that do not possess a symmetric shape to be less
detectable by humans. Furthermore, several features depend
on the difference between the pedestrian and its context (for
a critical discussion of context for object detection see Wolf
et al. [36]). We define the context of a pedestrian as a box
three times the width and double the height of the pedestrian,
located around the center of the pedestrian (see Figure 5).

The total dimensionality of all combined features is 378.
We normalized the feature vectors to ensure that each
dimension has a mean of zero and a standard deviation
of one (variance normalization) in order to guarantee that
no single dimension will dominate the ensuing distance
calculations in feature space. Without normalization, distance
judgments between two feature vectors could be dominated
by one dimension, whose variance could be, for example,
a couple of magnitudes larger than the rest. As the number
of feature dimensions is high when compared to the number
of training samples we would run into the so-called curse
of dimensionality (see [3], [5]). This observation states that



Fig. 5. The context of a pedestrian (gray) is the box twice the height of
the pedestrian and three times its width around the center of the pedestrian.

as the dimensionality of a problem increases, the number
of samples to evenly sample the space grows exponentially.
Furthermore, we can assume that there is a certain amount of
redundancy between dimensions (especially between differ-
ent color histograms). Preprocessing with a Principle Com-
ponent Analysis (PCA) did not improve the performance,
most likely due to the high levels of noise in some of
the features. Consequently, we opted for a feature selection
technique to compute an optimal subset of features for
the regression task (for more information and references
on feature selection techniques confer to, e.g. Huan et al.
[20]). As the number of possible feature-combinations grows
exponentially with the number of features, a search for
the optimum by enumerating all combinations is infeasible.
Therefore, we used a straight-forward heuristic to simulta-
neously select features and optimize the free parameters of
the SVR (the regularization parameter C, the slack variable
ξ and the σ of the RBF Kernel). We randomly initialized
all parameters and the feature selection, trained the SVR
on the training set and used the cross-validation error as
a measure of the performance. We trained a large number
of machines (in the order of 20.000) in this manner while
continuously keeping the best 100 SVRs. We then narrowed
down the search space according to the parameter distribution
of the remaining 100 SVRs and repeated the search with
a more fine grained parameter sampling. We repeated this
procedure till convergence. This method is closely related
to simulated annealing and yields a result that is likely
to be close to an optimum. Since this problem is easily
parallelizable, as training one SVR is independent of the
others, computation time is not an issue. Table III shows,
which features were finally selected by our feature selection
scheme. The dimensionality of the final descriptor is 68.
Interestingly, the final descriptor contains two shape-centered
features indicating the importance of symmetry for human
pedestrian detection.

After the feature selection and the parameter optimization,

Name Dimensionality
Area 1
PedCount 1
DiffStd 1
DiffHist 51
Dist2Center 1
Dist2Ped 1
DiffFix 1
PedMean 1
PixelPerClass 8
mfCount 1
mfMeanScale 1

TABLE III
THE RESULT OF OUR FEATURE SELECTION SCHEME. THE REDUCED

FEATURE VECTOR CONTAINS ONLY 68 DIMENSIONS.
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Fig. 6. Prediction performance of the trained regressor. The plot shows
the predicted detectability versus the true detectability (as assessed by our
experiment) for all images in the test dataset. Blue circles show the means
for each level of ground-truth detectability. The means show a clear linear
correlation.

we learned a model on the training data and predicted the
detectabilities of all pedestrians in the test dataset:

FSVR : X ∈ R68 → D ∈ [0, 1], (2)

where FSVR is the SVR we trained to predict the de-
tectability D for a pedestrian with the feature vector X. The
results are plotted in Figure 6. The mean squared error of
the prediction is 0.04 and the R2 value for the correlation
is 0.62. Due to the noise in the data, this might already be
very close to the optimal performance for this dataset.

V. OPTIMIZING THE FOCUS OF ATTENTION

Finally, we want to demonstrate that being able to predict
the detectability of a pedestrian has useful applications in a
real world scenario.

A. Concept

Using the same experimental setup as before we now use
our regression framework to maximize the overall detectabil-
ity of all pedestrians in a scene. Specifically, we show that we



Fig. 7. Shown are pairs of images and corresponding heat maps of
the predicted detectability for all possible fixation cross positions. Colors
indicate the mean of the predicted detectability for all pedestrians in the
image. The top row shows that our approach picks up on the large pedestrian
in the foreground that is easily perceived and shifts the focus of attention
to the harder to find pedestrians in the background.

Fig. 8. Examples of the two different methods of predicting the position
of the fixation cross. The red dot indicates the center between all labeled
pedestrians in the image while the blue dot is the optimal fixation point
according to our regressor. In the two cases here, the regressor has estimated
that one person will be particularly hard to detect and that the focus should
be shifted closer to that pedestrian.

are able to predict an optimal location of the fixation cross.
The optimal fixation cross location is the position where the
probability that all pedestrians will be detected is maximal. In
a driver assistance context this would be the location where,
e.g., a head-up display would need to direct the attention
of the driver in a sudden hazard situation. Four of our
features (Pos, Dist2Center, FixColor and DiffFix, c.f . Table
III) depend on the fixation point. By evaluating our regressor
at all possible fixation positions (all possible image scene
positions) and for all pedestrians detected in a scene we can
determine the optimal fixation cross where the probability for
the correct reporting, and thus recognition, of all pedestrians
is maximized. Figure 7 (right) shows examples of the mean
detectability for all pedestrians in the image as a function of
the position of the fixation cross.

Without knowledge about the detectabilities a driver as-
sistance system would have to assume that all pedestrians
in the scene are equally difficult to spot and it would
consequently have to guide the attention of the driver to
the center of gravity of all pedestrians. This scheme yields
different fixation points than the fixation points that have
been predicted by our scheme (see samples in Figure 8).
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Fig. 9. Portion of pedestrians whose position was correctly reported and
counted as a ‘hit’ as a function of the radius of the disc associated with
the pedestrian. Our method based on the results of the regressor (red line)
outperforms the methods that have no access to the detectability of the
pedestrians (center of all pedestrians in the image (blue line) and random
fixation cross position (green line)). The 6% absolute performance increase
equals a relative improvement of 16% over the ‘center’ method.

B. Validation

Based on these two kinds of fixation cross prediction
schemes (prediction using our regressor and the mean of
the pedestrian positions), we set up a second experiment
to evaluate whether our new method actually increases the
overall pedestrian detectability. We selected 115 images from
the database in which the two kinds of fixation points differed
by at least 50 pixels. We repeated the experiment described
in Section IV, but this time with a variable positioning of
the fixation cross.

To augment the test data set and to better compare the two
kinds of fixation locations, we used the mirrored versions of
the images as well, and presented the two different fixation
cross positions on the two versions of the same image.
The pairing of fixation cross type, whether the image was
mirrored or not and the presentation order was randomized
for each participant. In addition, we added a ‘baseline’
condition in which the fixation cross position was unrelated
to the image content. Random positioning would be an unfair
baseline condition as this would include fixation crosses in
the corners which is obviously suboptimal for the task. We
took fixation cross positions from different images, predicted
by one of the other two conditions, for our baseline condition.
This allowed us to ensure similar spatial distributions of
fixation crosses across all three conditions.

Each of the ten participants (mean age: 24.6 years, 5
males, 5 females) did 550 trials and completed a ques-
tionnaire afterwards. The head position of the participants
was again fixated 65 centimeters away from the monitor
using a chinrest resulting in a horizontal viewing angle of
approximately 60◦. Three of the subjects reported afterwards
that some of the images were presented twice in mirrored
conditions. Figure 9 shows the percentage of correctly re-



ported pedestrians across all trials as a function of hit radius
(the radius of the ring in Figure 3 for all three kinds of fix-
ation point locations (predicted, centered and random)). The
Figure plots the portion of pedestrians that were correctly
reported during the experiment as a function of hit-radius
(distance from the pedestrian in which a click is counted as
a detection of the pedestrian). Our regression based method
outperformed the fixation cross positioning at the center
between all pedestrians and the random baseline condition
for all hit-radii. This proof-of-concept demonstrates that the
ability to predict the detectabilities of pedestrians can be a
useful source of information for adaptive HMI systems.

VI. SUMMARY & OUTLOOK
In this paper, we presented and evaluated the novel concept

of estimating the detectability of pedestrians in natural im-
ages using machine vision. We trained a regressor to predict
these detectabilities and were able to show that estimating
the detectabilities can yield considerable improvements in
the overall detection rate of pedestrians.

Future investigations could aim to evaluate the detectabil-
ities of pedestrians in dynamic scenes. This would require
either videos with high quality annotations or a virtual
reality setup. A virtual reality setup would also allow closer
control over the parameters that influence the detectability
of pedestrians, the controlled introduction of distractors and
state-dependent estimations (e.g. the current body pose of
the pedestrian). This will allow us to evaluate our method in
a broader range of settings.
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[9] T. Bücher, C. Curio, H. Edelbrunner, C. Igel, D. Kastrup, I. Leefken,
G. Lorenz, A. Steinhage, and W. von Seelen. Image processing and
behaviour planning for intelligent vehicles. IEEE Transactions on
Industrial Electronics, pages 62–75, 2003.

[10] R. H. S. Carpenter. Movements of the eyes. Pion, London, 1977.
[11] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector

machines, 2001.
[12] N. Dalal and B. Triggs. Histograms of oriented gradients for human

detection. In International Conference on Computer Vision & Pattern
Recognition, pages 886–893, 2005.

[13] A. Doshi and M. Trivedi. Attention estimation by simultaneous
observation of viewer and view. In Computer Vision and Pattern
Recognition Workshops, pages 21 – 27, 2010.

[14] H. Drucker, C. J. C. Burges, L. Kaufman, A. Smola, and V. Vapnik.
Support vector regression machines. In Advances in Neural Informa-
tion Processing Systems, pages 155–161. MIT Press, 1997.

[15] D. Engel and C. Curio. Scale-invariant medial features based on
gradient vector flow fields. In International Conference on Pattern
Recognition, 2008.

[16] M. Enzweiler and D. M. Gavrila. Monocular Pedestrian Detection:
Survey and Experiments. Pattern Analysis and Machine Intelligence,
31(12):2179–2195, 2008.

[17] L. Fletcher, G. Loy, N. Barnes, and A. Zelinsky. Correlating driver
gaze with the road scene for driver assistance systems. Robotics and
Autonomous Systems, 52(1):71 – 84, 2005.

[18] C. Fulgenzi, A. Spalanzani, and C. Laugier. Probabilistic motion
planning among moving obstacles following typical motion patterns.
In International conference on Intelligent Robots and Systems, pages
4027–4033. IEEE Press, 2009.

[19] J. Haushofer, P. H. Schiller, G. Kendall, W. M. Slocum, and A. S.
Tolias. Express saccades: the conditions under which they are realized
and the brain structures involved. Journal of Vision, 2(7):174–174,
2002.

[20] L. Huan and H. Motoda. Feature Selection for Knowledge Discovery
and Data Mining. Springer, 1998.

[21] H. Kirchner and S. J. Thorpe. Ultra-rapid object detection with
saccadic eye movements: Visual processing speed revisited. Vision
Research, 46(11):1762 – 1776, 2006.

[22] M. Kleiner, D. Brainard, and D. Pelli. What’s new in psychtoolbox-3?
In European Conference on Visual Perception, 2007.

[23] T. Lan, Y. Wang, W. Yang, and G. Mori. Beyond actions: Discrimi-
native models for contextual group activities. In Advances in Neural
Information Processing Systems (NIPS), 2010.

[24] C. Laugier, S. Petti, D. A. Vasquez Govea, M. Yguel, T. Fraichard,
and O. Aycard. Steps towards safe navigation in open and dynamic
environments. In Conference on Robotics and Automation, 2005.

[25] B. Leibe, A. Leonardis, and B. Schiele. Robust object detection with
interleaved categorization and segmentation. International Journal of
Computer Vision, 77(1-3):259–289, 2008.

[26] B. Leibe, E. Seemann, and B. Schiele. Pedestrian detection in crowded
scenes. In Computer Vision and Pattern Recognition, pages 878–885,
2005.

[27] K. Mikolajczyk, C. Schmid, and A. Zisserman. Human detection based
on a probabilistic assembly of robust part detectors. In European
Conference on Computer Vision, volume 1, pages 69–81, 2004.

[28] R. Okada and S. Soatto. Relevant feature selection for human
pose estimation and localization in cluttered images. In European
Conference for Computer Vision, pages 434–445, 2008.

[29] C. Papageorgiou, T. Evgeniou, and T. Poggio. A trainable pedestrian
detection system. In Proceedings of Intelligent Vehicles, pages 241–
246, 1998.

[30] S. Pinneli and D. M. Chandler. A Bayesian approach to predicting
the perceived interest of objects. International Conference on Image
Processing, pages 2584–2587, 2008.

[31] L. Pomarjanschi, M. Dorr, C. Rasche, and E. Barth. Safer driving with
gaze guidance. In Proceedings of Bionetics, 2010. in press.

[32] Bundesamt für Straßenwesen. Verkehrs- und Unfalldaten.
http://www.bast.de, 2010.

[33] B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. MIT Press,
Cambridge, MA, USA, 2001.

[34] L. Sigal, S. Bhatia, S. Roth, M. J. Black, and M. Isard. Tracking loose-
limbed people. Computer Vision and Patter Recognition, 01:421–428,
2004.

[35] M. Spain and P. Perona. Measuring and Predicting Object Importance.
International Journal of Computer Vision, 91(1):59–76, Aug. 2010.

[36] L. Wolf and S. Bileschi. A critical view of context. International
Journal of Computer Vision, 69(2):251–261, 2006.


